The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
نویسنده
چکیده
We wish to explore a link between the Lax integrability of the q-Painlevé equations and the symmetries of the q-Painlevé equations. We shall demonstrate that the connection preserving deformations that give rise to the q-Painlevé equations may be thought of as elements of the groups of Schlesinger transformations of their associated linear problems. These groups admit a very natural lattice structure. Each Schlesinger transformation induces a Bäcklund transformation of the q-Painlevé equation. Each translational Bäcklund transformation may be lifted to the level of the associated linear problem, effectively showing that each translational Bäcklund transformation admits a Lax pair. We will demonstrate this framework for the q-Painlevé equations up to and including q-PVI.
منابع مشابه
A q-anaolg of the sixth Painlevé equation
A q-difference analog of the sixth Painlevé equation is presented. It arises as the condition for preserving the connection matrix of linear q-difference equations, in close analogy with the monodromy preserving deformation of linear differential equations. The continuous limit and special solutions in terms of q-hypergeometric functions are also discussed.
متن کاملSymmetries in Connection Preserving Deformations
We wish to show that the root lattice of Bäcklund transformations of the qanalogue of the third and fourth Painlevé equations, which is of type (A2 +A1) , may be expressed as a quotient of the lattice of connection preserving deformations. Furthermore, we will show various directions in the lattice of connection preserving deformations present equivalent evolution equations under suitable trans...
متن کاملRecurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کاملConnection preserving deformations and q-semi-classical orthogonal polynomials
We present a framework for the study of q-differential equations satisfied by q-semi-classical orthogonal systems. As an example, we identify the q-differential equation satisfied by a deformed version of the little q-Jacobi polynomials as a guage transformation of a special case of the associated linear problem for q-PV I . We obtain a parametrization of the associated linear problem in terms ...
متن کاملOn an integrable system of q-difference equations satisfied by the universal characters: its Lax formalism and an application to q-Painlevé equations
The universal character is a generalization of the Schur function attached to a pair of partitions. We study an integrable system of q-difference equations satisfied by the universal characters, which is an extension of the q-KP hierarchy and is called the lattice q-UC hierarchy. We describe the lattice q-UC hierarchy as a compatibility condition of its associated linear system (Lax formalism) ...
متن کامل